Dirac Geometry, Quasi–Poisson Actions and D/G–Valued Moment Maps

نویسندگان

  • Henrique Bursztyn
  • Marius Crainic
چکیده

We study Dirac structures associated with Manin pairs (d, g) and give a Dirac geometric approach to Hamiltonian spaces with D/G-valued moment maps, originally introduced by Alekseev and Kosmann-Schwarzbach [3] in terms of quasi-Poisson structures. We explain how these two distinct frameworks are related to each other, proving that they lead to isomorphic categories of Hamiltonian spaces. We stress the connection between the viewpoint of Dirac geometry and equivariant differential forms. The paper discusses various examples, including q-Hamiltonian spaces and Poisson-Lie group actions, explaining how presymplectic groupoids are related to the notion of “double” in each context.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

D/G-valued moment maps

We study Dirac structures associated with Manin pairs (d, g) and give a Dirac geometric approach to Hamiltonian spaces with D/G-valued moment maps, originally introduced by Alekseev and Kosmann-Schwarzbach [3] in terms of quasi-Poisson structures. We explain how these two distinct frameworks are related to each other, proving that they lead to isomorphic categories of Hamiltonian spaces. We str...

متن کامل

Dirac structures, moment maps and quasi-Poisson manifolds

We extend the correspondence between Poisson maps and actions of symplectic groupoids, which generalizes the one between momentum maps and hamiltonian actions, to the realm of Dirac geometry. As an example, we show how hamiltonian quasi-Poisson manifolds fit into this framework by constructing an “inversion” procedure relating quasi-Poisson bivectors to twisted Dirac structures. Dedicated to Al...

متن کامل

Dirac Structures , Moment Maps and Quasi – Poisson Manifolds Henrique

We extend the correspondence between Poisson maps and actions of symplectic groupoids, which generalizes the one between momentum maps and hamiltonian actions, to the realm of Dirac geometry. As an example, we show how hamiltonian quasi-Poisson manifolds fit into this framework by constructing an “inversion” procedure relating quasi-Poisson bivectors to twisted Dirac structures. Dedicated to Al...

متن کامل

Poisson geometry and Morita equivalence

2 Poisson geometry and some generalizations 3 2.1 Poisson manifolds . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 3 2.2 Dirac structures . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 4 2.3 Twisted structures . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 8 2.4 Symplectic leaves and local structure of Poisson manifolds ...

متن کامل

Momentum Maps and Morita Equivalence

We introduce quasi-symplectic groupoids and explain their relation with momentum map theories. This approach enables us to unify into a single framework various momentum map theories, including ordinary Hamiltonian G-spaces, Lu’s momentum maps of Poisson group actions, and the group-valued momentum maps of Alekseev–Malkin–Meinrenken. More precisely, we carry out the following program: (1) We de...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2007